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The relativistic equilibrium velocity distribution plays a key role in describing several high-energy and
astrophysical effects. Recently, computer simulations favored Jüttner’s as the relativistic generalization of
Maxwell’s distribution for d=1,2 ,3 spatial dimensions and pointed to an invariant temperature. In this work,
we argue an invariant temperature naturally follows from manifest covariance. We present a derivation of the
manifestly covariant Jüttner’s distribution and equipartition theorem. The standard procedure to get the equi-
librium distribution as a solution of the relativistic Boltzmann’s equation, which holds for dilute gases, is here
adopted. However, contrary to previous analysis, we use Cartesian coordinates in d+1 momentum space, with
d spatial components. The use of the multiplication theorem of Bessel functions turns crucial to regain the
known invariant form of Jüttner’s distribution. Since equilibrium kinetic-theory results should agree with
thermodynamics in the comoving frame to the gas the covariant pseudonorm of a vector entering the distri-
bution can be identified with the reciprocal of temperature in such comoving frame. Then by combining the
covariant statistical moments of Jüttner’s distribution a form of the equipartition theorem is advanced which
also accommodates the invariant comoving temperature and it contains, as a particular case, a previous not
manifestly covariant form.
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I. INTRODUCTION

Incorporating the relativity principles in kinetic theory is
crucial not only to understand the theoretical grounds in the
description of relativistic many-particles systems �1,2� but to
interpret relativistic high-energy experiments like those in-
volving heavy-ion collisions �3� as well as phenomena in the
astrophysical �4� and cosmological realms �5�. These in-
clude, for instance, the use of the relativistic Bolztmann
equation to understand the thermal history of the universe
�6,7� and the structure of the cosmic microwave background
radiation spectrum associated to its interaction with hot elec-
trons in galaxy clusters �8�.

In the case of equilibrium the history of the relativistic
analog of Maxwell’s velocity distribution goes back to F.
Jüttner, who in 1911 turned to relativity to consistently get
rid of the contribution of particles with speeds exceeding that
of light in vacuum, denoted by c, and which are contained in
Maxwell’s distribution. This was achieved upon replacement
of the nonrelativistic energy of the free particles by its rela-
tivistic form and a maximum entropy principle thus yielding
the so called one-particle Jüttner’s distribution �9�

f =
n

4�kTm2cK2�mc2/kT�
e−�p2c2+m2c4/kT, �1�

which is written here in momentum rather than velocity
space. m is the rest mass of any of the particles forming the

gas, k is Boltzmann’s constant, and K2 is the modified Bessel
function of order two �10�. The remaining quantities: particle
number density n, temperature T, and the relativistic spatial
momentum of the particle p, should be here understood as
determined by an observer comoving with the gas as a
whole. The mass shell condition, �E /c�2−p2=m2c2, is as-
sumed along the sequel. In the nonrelativistic regime �p�
�mc , kT�mc2, we have f � fMaxwell, where fMaxwell stands
for Maxwell’s velocity distribution. Thus particles’s speeds
beyond c are just an artifact of the nonrelativistic approxi-
mation.

Jüttner’s distribution in form �1� can be disadvantageous
in that it is not manifestly covariant, namely, it is not ex-
pressed in terms of Lorentz tensors which in turn explicitly
show its behavior under Lorentz transformations to investi-
gate its description for frames in relative motion. To make it
manifestly covariant two key information pieces are needed:
the transformation under change in frame of f and that of T.
Both of them have been considered in the literature at large
�11,12� and �1,13–15,17�, for temperature and distribution
function, respectively.

Upon multiplying �1� by the characteristic function for the
box confining the gas so that �Box�x�=1 for x within the box

and zero otherwise, the resulting distribution f̄�x ,p�
ª�Box�x�f�p� is defined on the single-particle phase space.

An observer would thus determine f̄d3xd3p particles of the
gas in a volume d3x located at x and having momentum p
within range d3p. Moreover f̄ must be Lorentz invariant
�13,16,17�. This is readily seen in the case of equilibrium
�18� �for the nonequilibrium case see �13��: for a simple gas

the number of particles N is invariant and so N=�d� f̄ , with
d�=d3xd3p, must be. Since d� is a Lorentz invariant mea-

*gca@xanum.uam.mx
†dll@xanum.uam.mx
‡hugo@xanum.uam.mx

PHYSICAL REVIEW E 81, 021126 �2010�

1539-3755/2010/81�2�/021126�9� ©2010 The American Physical Society021126-1

http://dx.doi.org/10.1103/PhysRevE.81.021126


sure due to a compensation between the transformations of

the �mass shell� spatial momentum and space measure, f̄
must be so too. Now since �Box is invariant �48� then f is.
Hence a manifestly covariant form of f amounts to manifest
invariance and, in particular, it should involve the behavior
of temperature under Lorentz transformations. The mani-
festly invariant Jüttner distribution was given long ago
�2,14,15,19�. It was determined by introducing spherical co-
ordinates on the pseudosphere associated to the mass shell in
relativistic four-momentum space. This provided a rather el-
egant and fruitful treatment which however does not seem to
have been fully appreciated in particular regarding tempera-
ture.

Alternatives to Eq. �1� have been proposed recently for
which Lorentz covariance is incorporated in a different man-
ner. In �20� a quantum mechanical approach including an
invariant “historical time” was considered to derive a mani-
festly covariant Boltzmann equation with stationary solution
implying a different ultrarelativistic mean energy-
temperature relation whereas in �21–23� a maximum relative
entropy principle was combined with an invariant group the-
oretical measure approach to obtain an equilibrium distribu-
tion. Both alternatives have been recently criticized in �24�.
Moreover recent molecular dynamics simulations of a two
component one dimensional simple relativistic gas showed
agreement with Eq. �1� and temperature defined through an
equipartition theorem was shown to be invariant under
change in frame �25�. The study of the two-dimensional case
along these lines has been reported in �26,27�. For three spa-
tial dimensions Monte Carlo simulations have been consid-
ered favoring also Jüttner’s distribution �28�. Amusingly, as
for temperature, such kind of analysis take us back to the
long standing discussion of whether a moving object appears
cooler �11,12,25,26�.

In this work we shall obtain the manifestly invariant Jütt-
ner distribution by adopting “Cartesian” rather than spherical
coordinates in relativistic �d+1�-momentum space �14,19�.
Our approach can be considered as an alternative to such
previous derivations of the Jüttner’s distribution and to oth-
ers �1,29� in the sense that we avoid adopting any frame
along the sequel which otherwise would raise the question on
the Lorentz transformation of temperature. We only allude to
the frame comoving with the gas at the end of the analysis to
relate the kinetic description with thermodynamics in par-
ticular to identify temperature with the Lorentz invariant
norm of a thermal vector. We once more obtain in this way
the thermal four vector introduced long ago �2,14,15,19�
which is formed by the product of the inverse comoving
temperature with the four velocity of the gas as a whole.
Also the lower dimensional cases recently studied �25–28�
are contained in our results. Hence comoving temperature is
seen to play a role analog to rest mass of a particle. The
compatibility of such an interpretation is further investigated
in relation with a manifestly covariant form of the equiparti-
tion theorem.

The paper is organized as follows. For the sake of com-
pleteness Sec. II briefly reviews the derivation of the Jüttner
distribution as an equilibrium solution of the relativistic
Boltzmann equation. This includes a brief description of the

two types of approaches: the manifestly covariant one adopt-
ing spherical coordinates on the mass shell pseudosphere in
momentum space and the one adopting the comoving frame
and Cartesian components. Section III provides the details of
our analysis in which we use “Cartesian” coordinates in mo-
mentum space to get the manifestly invariant distribution. In
particular the thermal Lorentz vector is here characterized.
Its role in the relativistic covariant equipartition theorem is
the subject of Sec. IV. Finally Sec. V summarizes our results.
We also describe the behavior of a Planckian distribution
when use is made of invariant temperature. The difficulties to
define a noncomoving temperature for a gas of massive par-
ticles is also touched upon to further stress that invariant
comoving temperature seems to be the only consistent pos-
sibility to define temperature according to the standard rela-
tivistic kinetic-theory framework.

Our conventions are the following. Space-time compo-
nents of tensors are denoted by greek indices: � ,� , . . .
=0 ,1 ,2 ,3, the zero component referring to time whereas
spatial components are denoted by latin indices i , j , . . .
=1 ,2 ,3. Einstein sum convention is assumed for both types
of indices throughout. The Minkowski metric has compo-
nents ���=diag	+,−,− ,−
.

II. JÜTTNER DISTRIBUTION AND THE RELATIVISTIC
BOLTZMANN EQUATION

Consider a simple dilute relativistic gas composed by
identical particles of mass m. To each particle correspond
space time and four-momentum coordinates, respectively,
given by x� and p�. The evolution of the one-particle distri-
bution function of the gas is governed by the relativistic
Boltzmann equation�1,29,30�.

p� � f̄

�x� + m
� f̄K�

�p� = C� f̄�, f̄�

C� f̄�, f̄� ª� � f̄1
�f� − f̄1 f̄�,F,	,d


d3p1

p1
0 . �2�

Here C� f̄� , f̄� is the so called collision term and f̄1
�

� f̄�x ,p1
� , t�, � implying a quantity is evaluated after the col-

lision. 	 is the differential cross section of the scattering
process whereas 
 is the solid angle. K� denotes an external
four-force while F is the so called invariant flux, F

=��p1
�p��2−m4c4, and

d3p1

p1
0 the invariant measure on mass

shell. We shall be interested in the case K�=0.
The equilibrium state can be defined so that the entropy

production vanishes �1,14,15,29�. In covariant form this
means �S�

�x� =0, with the entropy flux given by

S� = − kc� d3p

p0 p� f̄ ln�h3 f̄� , �3�

and h is a constant with dimensions to make the argument of
the logarithm dimensionless. Zero entropy production re-

quires f̄� f̄1
�= f̄ f̄1 and so the collision term C� f̄� , f̄� becomes

zero too. Such condition can be written as
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ln f� + ln f1
� = ln f + ln f1, �4�

where �Box canceled out. Equation �4� is fulfilled by the col-
lisional invariants �29� which for the present case become
the four-momentum up to a constant �independent of p��, so
that an f solving �4� takes on the form

ln f = − ���x� + �̃��x�p�� ⇔ f = �x�exp�− �̃��x�p�� .

�5�

Here the negative sign has been introduced for later conve-
nience, p� is the four-momentum of a particle of the gas and
=e−�. The equilibrium distribution function is fully ob-
tained by requiring consistency between Eq. �5� and the left
hand side of Eq. �2� equated to zero. Such substitution yields

� independent of x� and ���̃��x�+���̃��x�=0, whose solu-

tion is �̃��x�=���x�+�� and ���=−���. These correspond
to the ten Killing vectors �six for ���x� and four for ���
under which Minkowski space time metric is invariant. They
are associated with Lorentz transformations and space time
translations, respectively �31�. As we will see below �� can
be identified with the four velocity of the fluid as a whole
and thus it inherits space time symmetries in the form of
rigid motions: world lines of neighbor fluid elements would
keep their separation whenever they lie along Killing vectors
�14�. We shall restrict such motions to translations in the
present work and so only �� is considered.

To determine  and �� one assumes that typical physical
quantities are related to the statistical moments of the distri-
bution. For instance the particle number density flux and the
energy-momentum tensor

N� = c� d3p

p0 p� f̄ , �6�

T�� = c� p�p� f̄
ddp

p0 , �7�

can be, respectively, written as

N� = − �Boxc
�I

���

, �8�

T�� = �Boxc
�2I

��� � ��

, �9�

I ª� d3p

p0 e−�p
, �10�

from which the denomination of I as generating functional
suggests itself �14�. Having explicitly defined I will allow to
determine . On the other hand to obtain �� one relates the
kinetic theory form for thermodynamical quantities with
equilibrium thermodynamic equations assumed to hold in a
frame comoving with the gas as a whole. This will relate ��

with a comoving temperature.

To evaluate �10� one can express it in spherical coordi-
nates on the mass shell in momentum space �14,15,19�,
namely, since p0=�p2+m2c2, one has for the components of
the particle’s momentum

p� = �mc cosh �,mc sinh � sin � cos �,

mc sinh � sin � sin �,mc sinh � cos �� ,

0 � � � �, 0 � � � �, 0 � � � 2� , �11�

on the pseudosphere p�p�=m2c2. Hence Eq. �10� becomes

I =� d
�3�d� sinh2 � e−mc� cosh � = 4�
K1�mc��

mc�
,

���� = �2, �12�

where d
�3� is the element of solid angle in three spatial
dimensions, K1 is the modified Bessel function or order one
�10�, and �� has been chosen to lie along the �=0 axis.
Upon use of the identity between Bessel functions
d

du �u−nKn�u��=−u−nKn+1�u� to evaluate the components of the
statistical moments �8� and �9� allows to relate their compo-
nents in the comoving frame to get the equation of state for
the gas P=�c2�, with P the pressure and � the density of
energy, both in the comoving frame. This led Israel �14� to
identify �= c

kT , with T the invariant comoving temperature.
A different way to deal with Eq. �10� is to consider that,

being invariant, it can be calculated in a convenient frame,
say one in which ��= ��0 ,�=0�. Here cartesian coordinates
have been used in momentum space �1,29�. Noticing that �i�
�� in Eq. �6� should be timelike to make the integral to
converge and �ii� the only available timelike vector for the
gas as a whole is its velocity U�, one is led to propose ��

= U�

kT , so that T is identified with a quantity in a frame in
which U, the spatial part of U�, is zero. Such frame is the
comoving frame to the gas. This approach in which one
picks the comoving frame from scratch begs the question
about which is the Lorentz transformation of the tempera-
ture.

It would be desirable to be able to combine the power of
the spherical components of the manifestly covariant ap-
proach mentioned afore with the more intuitive and easier to
handle Cartesian ones and still be able to investigate the
behavior of temperature under Lorentz transformations. This
is indeed possible and will be discussed in the next section.

III. MANIFESTLY COVARIANT GENERATING
FUNCTIONAL WITH CARTESIAN COORDINATES

Since our analysis remains the same independently of the
number of spatial dimensions we consider such general case
at once. Hence unless otherwise stated, tensor indices run as
follows: � ,�¯ =0,1 ,2 , . . . ,d, for d spatial dimensions.

A. Determination of �

Let us consider a frame noncomoving with the gas so that
the spatial components of ��, namely �, are nonzero. In
d-dimensional space the integral I, Eq. �10�, just requires to
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change the measure from d3p to ddp. Now we adopt spheri-
cal coordinates only for the spatial part of the momentum
and assume that � ·p= ����p�cos �1. We then have
ddp= �p�d−1d�p�d
�d�, where

d
�d� = �sin �1�d−2�sin �2�d−3
¯ �sin �d−2�1

�d�1d�2 ¯ d�d−2d� = i=1
d−2�sin �i�d−i−1d�id� ,

where 0���2� and 0��i�� �32�. Thus I can be writ-
ten as

I = Sd−1� d�p��p�d−1

p0 �sin �1�d−2d�1e−�0p0
e����p�cos �1.

�13�

Here Sd−1= 2��d−1�/2

��d−1
2

�
is the hypersurface of the

d−1-dimensional sphere �32� resulting from integrating over
� and d
�d−1�, which excludes �1. To integrate over �1 it is
better to use the series form of the spatial exponential

e����p�cos �1 =�k=0
� �����p�cos �1�k

k! . In this way �13� becomes

I = Sd−1�
k=0

� ���k

k!
� �p�d−1+kd�p�

p0 e−�0p0

� �
0

�

sin �1
d−2 cos �1

kd�1. �14�

The remaining angular integral is nonzero only for k
=2n , n=0,1 ,2 , . . . and, moreover, it can be related to the
beta functions B� 2n+1

2 , d−1
2 � �10� so that

I = Sd−1�
n=0

� ���2n

�2n�!
B�2n + 1

2
,
d − 1

2
�

�� e−�0p0
�p02 − m2c2��2n+d−2�/2dp0. �15�

Where we have exchanged the independent variable �p� by p0

by using the mass shell condition. The further change y0

= p0 /mc and z0=mc�0 together with the integral form
�1

�dxe−ax�x2−1� j−1/2= � 2
a � j ��j+1/2�

��1/2� Kj�a� for the modified
Bessel function �10� leads to

I = Sd−1�
n=0

� ���2n

�2n�!
B�2n + 1

2
,
d − 1

2
��mc�2n+d−1

� � 2

z0
��2n+d−1�/2��n +

d

2
�

��1

2
� K�2n+d−1�/2�z0� . �16�

At this point we make the following considerations: �i� we
use the known expression of the beta function in terms of the
gamma functions �10� and then �ii� introduce z�=mc�� to-
gether with �ª �z� /z0, 0���1, the latter following from
the fact that �� is timelike. Thereby Eq. �16� may be rewrit-
ten as

I = 2�d+1�/2�mc�d−1��

z0
��d−1�/2

�
n=0

�

�2nz0
n
Kn+��d−1�/2��z0�

2nn!
.

�17�

Here we arrive at a critical point from the technical per-
spective. The sum in Eq. �17� can be further reduced to a
modified Bessel function upon using the multiplication theo-
rem of the Bessel functions �33�

K���x� = ���
l=0

� �− 1�l��2 − 1�l�1

2
x�l

l!
K�+l�x� , �18�

with ��2−1��1. This finally produces

I = 2�mc�d−1�2
�

z
��d−1�/2

K�d−1�/2�z� . �19�

where z��z�z�=mc�. Formula �18� is essential to trade the
Bessel series in Eq. �17� by a single modified Bessel function
in Eq. �19�. This becomes Eq. �12� when d=3. We see that I
is only function of the invariant z. Now we can obtain the
relativistic particle number density flux from Eq. �8� produc-
ing

N� = 2mdcd+1�Box�2
�

z
��d−1�/2

K�d+1�/2�z�
z�

z
. �20�

Such equation can be solved for  giving

�Box ª
N

2c�mc�dK�d+1�/2�mc���mc�

2�
��d−1�/2

. �21�

It is clear from Eq. �20� that z� and N� point in the same
direction. Let us notice that N�=NU� /c, where N=�N�N�.
In the comoving frame U�→ �c ,0�, and then N=nc, where n
is the number density in the comoving frame �see Eq. �1��.
Then we have

�� =
�

c
U�. �22�

The physical significance of � within our approach is dis-
cussed in the next subsection.

B. Θ� and the invariant temperature

Now we seek to identify �� with a thermodynamical
quantity. Let us take as our starting point the Gibbs form of
the second law of thermodynamics for a closed system
�15,34�, which we shall assume to hold in the comoving
frame

�U = T�S − P�V . �23�

Clearly we must relate the relativistic kinetic expressions
like the energy-momentum tensor and entropy flux with in-
ternal energy, U, entropy, S, pressure P and volume V ap-
pearing in Eq. �23�. To begin with let us introduce the distri-
bution function �5� and Eq. �21�, in the expression for the
energy-momentum tensor �9�. This leads to
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T�� = −
N

�
���� −

Kd+3
2

�z�

Kd+1
2

�z�
����

�
mc� . �24�

The comoving pressure can be obtained from the energy-
momentum tensor in d-dimensions as

P � −
1

d
���T�� =

N

�
, �25�

where the projector is �������−U�U�c−2. The correspond-
ing d dimensional entropy flow �3� can be conveniently re-
expressed as

S� = − k�ln�hd�N� − T����� . �26�

It is worth stressing that the quantities N�, T��, and S� are
densities, and therefore do not depend on the size of the
system. It is however rewarding to include the fact that the
gas is inside a box and to do so we make use of the charac-
teristic function �Box defined in the introduction. In particular
integrating over d spatial dimensions

N = c−1� N�d	�, �27�

S = c−1� S�d	�, �28�

G� = c−1� T��d	�. �29�

In the previous expressions �27�–�29�, d	�=n�ddx, with n� a
unit normal to the spacelike hypersurface, and therefore a
timelike vector. Recall that the only dependence on x� is
through the characteristic function �Box, which is implicit in
the definitions of S�, N�, and T��, Eqs. �3�, �8�, and �9�,
respectively. To calculate the above spatial integrals we take
a hyper plane comoving with the gas so that its unit normal
is given by n�= U�

c = ��

� . Since U� is an intrinsic property of
the system this choice provides a truly covariant form of
such integrals �35�. Notice that for a different choice such as
n�=�0

� that corresponds to the case of a fixed time hyper-
plane, the integral of the momentum Eq. �29� would be only
an apparent rather than true Lorentz vector �49�. Therefore,
the number of particles N and the entropy S are obviously
Lorentz scalars while G�, the relativistic momentum of the
gas, is a Lorentz vector.

Integrating �26� with use of Eqs. �27�–�29� yields

S = − k�N ln�hd� − ��G�� , �30�

Now we can make contact with Eq. �23� by going to the
comoving frame. Consider Eq. �30� for which such process
means, in light of Eq. �22�, ��G�→�0G0=�G0. The differ-
ential of the entropy, Eq. �30�, in thermodynamic space ��
constant� becomes hereby

�S = k���G0 −
NP

c

�N

N2 � ,

=
k�

c
���cG0� + P�V� , �31�

where use has been made of Eqs. �21� and �25� and the
relation �V=−N�N

N2 . Comparison of Eq. �23� with Eq. �31�
gives rise to the identification

� =
c

kT
. �32�

with T the comoving temperature by interpreting cG0 as the
relativistic generalization of internal energy U; this clearly
holds in the low speed regime in which cG0�Nmc2

+Unon−rel, with Unon−rel the usual nonrelativistic internal en-
ergy of the gas. Thus Eqs. �21�, �22�, and �32� complete our
analysis of the manifestly covariant distribution function
which is expressed in terms of invariant quantities,
N ,� ,m ,c ,��p�, in the fashion

f�p� =
N

2c�mc�dKd+1
2

�mc���mc�

2�
��d−1�/2

exp�− ��p�� .

�33�

Equation �33� for d=1 and 2 reduces to those in �25–27�,
respectively. Equation �1� is obtained from Eq. �33� by con-
sidering d=3 and using the comoving frame to the gas.
Moreover, Eq. �33� coincide with the obtained in �23� for
arbitrary d.

It should be stressed however that in deriving Eq. �33� no
assumption was made in regard to the Lorentz transforma-
tion of temperature. The latter came from the requirement to
reproduce equilibrium thermodynamics in the comoving
frame.

IV. COVARIANT EQUIPARTITION THEOREM

Equipartition theorems are usually considered to connect
temperature with averages of say kinetic energy in the non-
relativistic case and certain functions of momenta in the rela-
tivistic case �12,38�. Now, as we have shown in the previous
section a manifestly covariant approach to relativistic equi-
librium distribution function unveils the convenience of us-
ing an invariant temperature which is the one associated with
the comoving frame of the gas. Thus it is of interest to in-
vestigate the role an invariant temperature plays within a
manifestly covariant equipartition theorem.

The nonmanifestly covariant but relativistic equipartition
theorem seems to have been first considered by Tolman �38�
and later by others �39�. Its use as a criterion to determine the
Lorentz transformation of temperature was criticized by
Landsberg �12� who stressed that it can accommodate both
an invariant as well as a transforming temperature under a
change in frame. Recently Cubero et al. performed numeri-
cal simulations indicating the existence of an invariant tem-
perature �25� on the basis of the relativistic equipartition
theorem of �12� thus hinting at the invariant temperature in-
cluded in Landsberg’s analysis. In this section, we shall pro-
vide a manifestly covariant form of the equipartition theorem
which not only contains an invariant temperature but in-
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cludes Landsberg’s version. Moreover our form of the theo-
rem is neatly expressed in terms of the total momentum of
the gas.

Let us start by reexpressing the generating functional I
�10� in �d+1�-dimensional momentum space �1�

I = 2� e−��p�
��p	p	 − m2c2�H�p0�dd+1p , �34�

where H�p0� is the Heaviside function that restricts �34� to
positive energies. The mass shell condition is accounted for
by Dirac’s delta.

By covariantly extending the argument in �38�, we next
integrate by parts d+1 times one for each p� and discarding
the boundary terms at infinity we obtain

I = −
2

d + 1
� p� �

�p� �e−��p�
��p	p	 − m2c2��H�p0�dd+1p .

�35�

To integrate over p0 we apply the properties of the Dirac
delta which finally yields

I =
1

d
� e−��p��� �p�

p0 �2

+ ��

�p�

�pi pi�ddp

p0 . �36�

Remarkably, notwithstanding the second term in Eq. �36�
containing the spatial components pi it is Lorentz invariant
overall.

To connect with the physical framework Eq. �36� is
plugged back into Eqs. �8� and �9� to yield

N =
c

d
� ddp

p0 f�p�� �p�
p0 �2

+ pi�p�

�pi ��� − pi�p

�pi � ,

�37�

T� =
c

d
� ddp

p0 f�pp��� �p�
p0 �2

+ pi�p�

�pi ��� − pi�pp�

�pi � .

�38�

A further spatial integration of Eqs. �37� and �38� according
to Eqs. �27� and �29� gives rise to

d = ����pi�p�

�pi �� , �39�

G =
N
d
�����pi�p�

�pi p�� − ��pi�p

�pi ��� . �40�

where �� · ��ª 1
N�· f̄dd� has been used. It is worth stressing

that Eq. �39� is just the manifestly covariant form of the
equipartition theorem corresponding to that advanced by Tol-
man and Landsberg �12,38�, respectively, expressed using
the invariant comoving temperature T=c /k�, Eq. �32�. A
comment regarding covariance of Eq. �39� is here in order.
Although it contains the spatial sum pi �

�pi , we arrive to it
from the manifestly covariant Eq. �34�. This is analogous to
recognizing the invariance of d3p

p0 . Clearly the argument holds
also for both terms in the right-hand side of Eq. �40�.

Observing that Eqs. �39� and �40� contain a common term
suggests that the relativistic momentum can be made to enter
the covariant equipartition theorem. To proceed further we
need to determine the first term in Eq. �40�. First we combine
Eqs. �24� and �29� to obtain the explicit form for the momen-
tum

G = N�

�2�mc�
Kd+3

2
�mc��

Kd+1
2

�mc��
− 1� . �41�

By equating the projections �G of Eqs. �40� and �41� we
identify

���

d
��pi�p�

�pi p�� =
Kd+3

2
�mc��

Kd+1
2

�mc��
mc� . �42�

From here we finally arrive at

��G�

N
− z = Fd�z� , �43�

Fd�z� ª z
Kd+3

2
�z�

Kd+1
2

�z�
− 1 − z . �44�

Amusingly just in the same way as the energy of a particle
having momentum pparticle

� is determined by an observer hav-
ing velocity Uobs

� is given by Eobs= p�particleUobs
� we interpret

1
���G� as the energy of the gas determined by the comoving
observer.

Fd�z� reduces to the usual values of the equipartition
theorem in the limiting cases �see Fig. 1�.

FIG. 1. �Color online� The graph shows Fd�z� vs z=mc2 /kT for
d=3. F3�z� corresponds to the quotient of the average of the rela-
tivistic kinetic energy per particle and the comoving temperature.
We see that for z�1 and z�1 we get the appropriate limits, while
for intermediate values of z, the ratio is a fraction between 3
�F3�z��3 /2.

CHACÓN-ACOSTA, DAGDUG, AND MORALES-TÉCOTL PHYSICAL REVIEW E 81, 021126 �2010�

021126-6



Fd�z� = �d

2
, z � 1

d , z � 1.
� �45�

Notice that although a relativistic equipartition theorem had
been considered before by other authors �19,40� their ap-
proach was not manifestly covariant. Their work and ours
coincide in terms of the function Fd �44�, in particular the
behavior in the nonrelativistic as well as in the ultrarelativ-
istic limits. Remarkably, recent numerical calculations adopt-
ing Monte Carlo methods �28� confirm Fd as giving the rela-
tivistic kinetic energy divided by kT.

V. DISCUSSION

The interest in incorporating the relativity principles into
kinetic theory goes beyond the theoretical foundations: Ac-
tual observations and experiments like for instance in high-
energy physics �3�, astrophysics �4�, and cosmology �5� re-
quire a description of relativistic many-particles systems in
terms of, say, Boltzmann’s equation and the corresponding
equilibrium distribution �6–8�. Recently, Cubero et al. �25�
�see also references there� have developed numerical simu-
lations based on molecular dynamics pointing to Jüttner’s as
the equilibrium distribution in agreement with their numeri-
cal analysis, as opposed to other proposals in the literature,
for one and possibly other number of spatial dimensions.
This was further confirmed for two �26,27� and three �28�
spatial dimensions, the latter adopting Monte Carlo simula-
tions instead. In �25�, the old problem regarding the relativ-
istic transformation of temperature �11� was also considered
in connection with a previous relativistic version of the eq-
uipartition theorem proposed by Landsberg �12�. Based upon
such theorem Cubero et al. determined, within their ap-
proach, that temperature should possess an invariant charac-
ter. It is worth mentioning that such analysis were not for-
mulated in a manifestly covariant form and indeed some
further insight was needed to interpret the contributions en-
tering such theorem as well as temperature.

In this work we have obtained a derivation of the mani-
festly invariant Jüttner’s relativistic distribution function
�33�. This is based on Cartesian coordinates in
�d+1�-momentum space �d spatial dimensions� in contrast
with the known results developed using spherical coordi-
nates. This was made possible by the use of the multiplica-
tion theorem for Bessel’s functions �18� which simplified the
treatment of a series involving Bessel functions �33�. In this
approach no assumption is made a priori of any specific
relativistic character for temperature. The latter appears
through the invariant norm, �, of a four vector, �� �22�, and
it is invariant just for the same reason a point particle’s rest
mass is. Indeed because of the assumption that relativistic
equilibrium kinetic theory should agree with standard ther-
modynamics for an observer comoving with the system un-
der study the pseudonorm becomes �=c /kT, Eq. �32�, T
being the comoving temperature of the gas. Finally we have
developed a manifestly covariant equipartition theorem, Eq.
�43�, in which the average of the energy-momentum of the
gas as determined by the comoving observer is given by a

function Fd, Eq. �44� of the invariant temperature. Indeed
this is analogous to the case of a point particle for which the
energy is obtained by projecting momentum along the four
velocity of the observer. Here we have the thermal vector
��= c

kTU�, with U� the four velocity of the gas as whole
which defines a comoving observer reading the invariant
temperature T. A further comment is here in order regarding
the difference between our approach and previous ones.
While previous versions of the equipartition theorem �12,38�
relate temperature with a peculiar combination of relativistic
quantities �see for example Eq. �39��, here we interpret that
combination as included in Eq. �43� which relates the invari-
ant temperature with the averaged relativistic momentum,
G�.

In a nutshell the manifestly covariant form of Jüttner’s
distribution leads naturally to consider the invariant comov-
ing temperature to characterize the equilibrium regime. As an
illustrative example of how this result applies to known cases
let us consider the case of black body radiation. Let us recall
the standard analysis of this problem �5,7,18�: the Lorentz
invariance of

I�

�3 , containing the specific intensity I� and the
frequency � of the photons, implies the invariance of the
Planckian distribution

I�

2h�3 =
1

ehv/kT − 1
. �46�

Indeed for two frames in relative motion one should have

h�

kT
=

h��

kT�
, �47�

where primed quantities refers to an observer that moves
with respect to radiation and, in particular, T� is suggested as
the noncomoving temperature. Since the photons suffer a
Doppler shift

�

��
= ��1 − � cos �� , �48�

where � is the angle between the momentum of the photon
and the gas velocity whereas � is the ratio between the gas
speed and c. The quantity T� takes the anisotropic form

T� =
T

��1 − � cos ��
. �49�

Notice that we could alternatively write a manifestly invari-
ant form for Eq. �46� as �e��p�

−1�−1. In this way one can
focus in the invariant product ��p�. By evaluating it in the
two frames mentioned above and using that for photons
p�0= �p��

h�

kT
= ��0p�0�1 − � cos �� . �50�

Considering the invariant comoving temperature T the com-
ponents ��� become �

kT �c ,U� and thus Eq. �50� reduces to
Eq. �48�. This shows the consistency of adopting such invari-
ant comoving temperature, through ��, in the description of
the black body radiation without resorting to T�, Eq. �49�.
The latter can be regarded only as an auxiliary quantity for
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the following reasons. First, actual observations of the cos-
mic microwave background radiation �CMBR� �41� reveal
there is a frame in which it presents the black body structure.
Measurements however involve brightness depending on fre-
quency rather than a noncomoving temperature �49�. Second,
in the case of massive particles one finds and obstacle to
handle �49� �see for instance �42��. For massive particles we
would have

T� =
T

��1 − �p� cos ��
,

�p =
�p�
p0 , �51�

which makes no sense due to the dependence on the par-
ticles’ momentum. However adopting an invariant comoving
temperature is viable just for the same reason that the case
for photons described above works.

Our work then adds to recent claims elaborated on the
basis of an Unruh-DeWitt detector �43� pointing to the im-
possibility to have a relativistic transformation of tempera-
ture �44�. In any case all these results reinforce the idea that
temperature makes undisputable sense in the comoving
frame.

There are several possible extensions of the present work
which could be of interest. One possibility is to extend the
analysis in the present work to the case of relativistic Fokker-

Planck equation, say along the lines of �45�. In other direc-
tion, we have seen that in order to solve Boltzmann’s equa-
tion for the equilibrium distribution the concept of rigid
motions appeared. They can be seen related to the symme-
tries of Minkowski space time that we have here considered
and specifically to the existence of Killing vectors. Although
symmetric curved space times have been studied previously
for instance in �2,6� there seems to be no attempt to incor-
porate the analog of Noether’s theorem in regard to the ki-
netic theory in particular noticing that the latter can be linked
to relativistic quantum field theory �1,24�. This would be
particularly useful in the manifestly covariant approach.
Generally covariant approaches to statistical mechanics have
also been studied to investigate many particle systems in
general relativistic theories �46�. It is a challenge to incorpo-
rate similar ideas to kinetic theory. Furthermore the very no-
tion of space time has been considered in these terms �47�.
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� , where both terms on the right hand side are true

Lorentz vectors.

MANIFESTLY COVARIANT JÜTTNER DISTRIBUTION AND … PHYSICAL REVIEW E 81, 021126 �2010�

021126-9


